SPEKTROSKOPIA MOLEKULARNA

Il semestr studiów magisterskich

Zastosowania fizyki w biologii i medycynie: Biofizyka molekularna

oraz

Fizyka: Biofizyka

(30 h wykładu + 30 h ćwiczeń)

2.

SPEKTROSKOPIA MOLEKULARNA - PLAN WYKŁADU I ZAGADNIENIA

- I. Fizykochemiczne podstawy spektroskopii (rekapitulacja; 1 wykład)
 - struktura, symetria i konformacja cząsteczki
 - dynamika ruchów molekularnych model dyfuzyjny
- II. Oddziaływanie promieniowania elektromagnetycznego z cząsteczkami (3 wykłady)
 - energia cząsteczki i makroskopowego układu cząsteczek, diagram Jabłońskiego
 - prawdopodobieństwo przejścia (złota reguła Fermiego), moment dipolowy przejścia, absorpcja, emisja, rozpraszanie Raman i tensor polaryzacji, reguły wyboru
 - klasyfikacja i ogólna charakterystyka metod spektroskopii, parametry opisu widma
 - techniczne podstawy rejestracji widm, lasery, spektroskopia fourierowska
- III. Spektroskopia absorpcyjna i ramanowska w podczerwieni (IR) (2 wykłady)
 - widma cząsteczek dwuatomowych
 - widma oscylacyjne cząsteczek wieloatomowych; drgania normalne, częstość grupowa (charakterystyczna)
 - struktura rotacyjna pasm oscylacyjnych, tensor momentu bezwładności,
 - widma aktywności optycznej Ramana (ROA) i wibracyjnego dichroizmu kołowego (VCD)
- IV. Spektroskopia w bliskim nadfiolecie i w zakresie widzialnym (UV VIS) (3 wykłady)
 - absorpcyjne widma elektronowe, reguła Francka-Condona
 - chromofor i diagram Kasha, sprzężenie wibronowe
 - fluorescencja i fosforescencja; metody stacjonarne i czasowo-rozdzielcze, fluorescencja korelacyjna FCS
 - wygaszanie stanów wzbudzonych; rezonansowy transfer energii (FRET)
 - dichroizm kołowy (CD), dichroizm liniowy (LD), rezonansowy efekt Ramana (RR)
- V. Magnetyczny rezonans jądrowy (NMR) i elektronowy rezonans paramagnetyczny (EPR) (4 wykłady)
 - rezonans magnetyczny jądra w ujęciu kwantowym i rezonans makroskopowego układu jąder w ujęciu klasycznym
 - oddziaływania jądro-jądro i jądro-elektron
 - widma wysokiej zdolności rozdzielczej i widma w ciele stałym
 - wymiana chemiczna, relaksacja jądrowa, jądrowy efekt Overhausera (NOE)
 - techniki wieloimpulsowe i widma wielowymiarowe
 - rezonans magnetyczny elektronu i struktura widm EPR
- VI. Współczesne techniki spektroskopowe, przykłady zastosowań spektroskopii w biofizyce, chemii i biologii (1 2 wykłady)
 - techniki wielowymiarowe
 - spektroskopia pojedynczej cząsteczki (SMS)
 - przykłady zastosowania spektroskopii molekularnej

LITERATURA

- 1. P.W. Atkins "Molekularna mechanika kwantowa"
- 2. H. Günther "Spektroskopia magnetycznego rezonansu jądrowego"
- 3. F.A. Cotton "Teoria grup. Zastosowania w chemii"
- 4. W. Demtröder "Spektroskopia laserowa

Plansze i tekst wykładu na: http://www.biogeo.uw.edu.pl/spektroskopia_molekularna

3. STRUKTURA I SYMETRIA CZĄSTECZKI BENZENU

4. WZORY TEORII REPREZENTACJI GRUP SYMETRII

punktowa grupa symetrii cząsteczki: $G = \{R\} = \{A, B, C, ..., X, ...\}$ aksjomaty grupy:A(BC) = (AB)Cłączność AE = EA = A element jednostkowy $AA^{-1} = A^{-1}A = E$ element odwrotny elementy sprzężone A i B: $A = X^{-1}BX$ $f(R^{-1}x) = rf(x)$ albo rf(Rx) = f(x)reprezentacja n – wymiarowa grupy: $L = \{r\}$ zbiór operatorów liniowych czyli macierzy n-wymiarowych D(R) w wybranym układzie funkcji bazowych $f_1, f_2, ..., f_n$ $\mathbf{r} \mathbf{f}_{k}(\mathbf{x}) = \sum_{i=1}^{n} \mathbf{f}_{i} \mathbf{D}_{ik}(\mathbf{R})$ rozkład na reprezentacje nieprzywiedlne (wielki teoremat ortogonalności): $\mathbf{D} = \mathbf{D}^{(1)} \oplus \mathbf{D}^{(2)} \oplus \dots \oplus \mathbf{D}^{(K)} = \begin{bmatrix} I_1 & I_2 & I_K \\ [D^{(1)}] & 0 & 0 & 0 \\ 0 & [D^{(2)}] & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & [D^{(K)}] \end{bmatrix}$ $\sum_{j=1}^{1} l_j^2 = h \qquad h - rząd grupy G$ l_i - wymiar j-tej reprezentacji

charakter macierzy-operatora D(R): $\chi(R) = \sum_{n} D_{nn}(R)$

5. TABLICE CHARAKTERÓW GRUP C_{2v} , D_{6h} , C_{wv} i D_{wh}

								a shadkara					
		D_{6h}	$ E 2C_{\epsilon}$	$2C_3$	C_2 3	$C'_{2} 3C'_{2}$	I 2	S3 25	$\sigma_6 \sigma_h$	$3\sigma_d$	$3\sigma_v$		
		$\overline{A_{1g}}$	1 1	1	1	1 1	1	1	l 1	1	1		$x^2 + y^2, z^2$
		A_{2g}	1 1	1	1 —	1 -1	1	1	l 1	-1	-1	R_z	
CALE		B_{1g}	1 -1	1	-1	1 -1	1 -	-1	l —1	/ 1	-1		
$C_{2v} \mid E$	$C_2 \sigma_v(xz) \sigma_v(yz)$	B_{2g}	1 -1	1	-1 -	1 1	1 -	-1 :	-1	-1	1		
$A_1 \mid 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_{1g}	2 1	-1	-2	0 0	2	1 -	1 - 2	0	0	(R_x, R_y)	(xz, yz)
$A_2 \mid 1$	$1 - 1 - 1 R_z xy$	E_{2g}	2 -1	-1	2	0 0	2 -	-1 -1	2	0	0		(x^2-y^2, x)
$B_1 \mid 1$	-1 1 -1 x, R_y xz	A_{1u}	1 1	1	1	1 1	-1 -	-1 -1	l 1	<u>-</u> 1	-1		
$B_2 \mid 1$	-1 -1 $1 \mid y, R_x \mid yz$	A_{2u}	1 1	1	1 —	1 -1	-1 -	-1 -1	-1	1	1	Z	
		B_{1u}	1 -1	1	-1	1 -1	-1	1 -1	1	-1	1		
		B_{2u}	1 -1	1	-1 -	1 1	-1	1 -1	. 1	-1	-1		
		E _{1u}	2 1	-1	-2	0 0	-2 -	-1 1	2	0	0	(x, y)	
		E_{2u}	2 -1	-1	2	0 0	-2	1 1	-2	0	0		
$ \begin{array}{c} g_{g} \\ \Box_{g} \\ \Delta_{g} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} $	$\begin{array}{c} R_z \\ (R_x, R_z) \end{array}$	(y)	(xz, y) $(x^2 - y)$	(yz) (y^2, xy)							
Σ_{u}^{+} Σ_{u}^{-} Π_{u} Δ_{u}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} & -1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 $	$\begin{bmatrix} z \\ (x, y) \end{bmatrix}$		<u> </u>	ov E	<u>2</u> 2C	©	$\infty \sigma_v$				2 2 2 2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} $	$\begin{bmatrix} z \\ (x, y) \end{bmatrix}$		$ \begin{array}{c} C_{\circ} \\ \overline{A_1 \equiv \Sigma} \\ A_2 \equiv \Sigma \end{array} $	ov E C ⁺ 1 C ⁻ 1	E 2C 1 1	••••••••••••••••••••••••••••••••••••••	$\frac{\infty \sigma_v}{1}$	z Rz			$x^2 + y^2, z^2$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} & -1 \\ & 1 \\ & 0 \\ & 0 \\ & \\ & \\ $	$\begin{bmatrix} z \\ (x, y) \end{bmatrix}$		C_{a} $\overline{A_{1} \equiv \Sigma}$ $A_{2} \equiv \Sigma$ $E_{1} \equiv I$	ov E C ⁺ 1 C ⁻ 1 I 2	$\frac{E}{1}$ $\frac{2C}{1}$ $\frac{1}{2}$ $\frac{1}{2}$	• … … ⊕ …	$\begin{array}{c c} \infty \sigma_v \\ \hline 1 \\ -1 \\ 0 \\ \end{array}$	$\frac{z}{R_z}$);(<i>R</i> ,	x, Ry) ($\frac{x^2 + y^2}{(xz, yz)}, z^2$
$ \sum_{u}^{+} \sum_{u}^{-} \prod_{u} \Delta_{u} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} & -1 \\ & 1 \\ & 0 \\ & 0 \\ & \\ & \\ $	$\left \begin{array}{c} z \\ (x, y) \end{array} \right $		$ \frac{C_{a}}{A_{1} \equiv \Sigma} $ $ A_{2} \equiv \Sigma $ $ E_{1} \equiv \Pi $ $ E_{2} \equiv \Delta $	ov E 2 ⁺ 1 2 ⁻ 1 1 1 2 4 2	E 2C 1 1 2 cos 2 cos	Φ 2Φ	$\begin{array}{c c} \infty \sigma_v \\ \hline 1 \\ -1 \\ 0 \\ 0 \\ \end{array}$	z R_z (x, y));(R,	(x, R_y)	$x^{2} + y^{2}, z^{2}$ (xz, yz) (x^{2} - y^{2}, x)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} $	$\left \begin{array}{c} z \\ (x, y) \end{array} \right $		$ \frac{C_{\circ}}{A_{1} \equiv \Sigma} $ $ A_{2} \equiv \Sigma $ $ E_{1} \equiv \Pi $ $ E_{2} \equiv \Delta $ $ E_{3} \equiv \Phi $	ov E 2 ⁺ 1 2 ⁻ 1 1 2 2 2 2 2 2	2 2C 1 1 2 cos 2 cos 2 cos	2Φ 3Φ	$ \begin{array}{c c} \infty \sigma_v \\ \hline 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $	$\frac{z}{R_z}$);(<i>R</i> ,	(($x^{2} + y^{2}, z^{2}$ (xz, yz) (x^{2} - y^{2}, x)

6. ZASTOSOWANIA TEORII REPREZENTACJI GRUP W SPEKTROSKOPII

niezmienniczość hamiltonianu względem grupy symetrii cząsteczki G:

(A) funkcje własne poziomów = baza reprezentacji nieprzywiedlnej o wymiarze g

$$\mathbf{H}(\mathbf{r}_{k}\Psi_{k}) = \mathbf{E}_{kj} \sum_{j=1}^{g} \mathbf{D}_{jk}\Psi_{j}$$

zaburzenie V hamiltonianu H o symetrii G' \subset G: usunięcie degeneracji g poziomu i jego rozszczepienie

(B) elementy macierzowe operatora **A**: $\int d\tau \Psi_m^{\ i} \mathbf{A} \Psi_n^{\ j} \neq 0$

jeśli reprezentacja pełnosymetryczna należy do rozkładu iloczynu Kroneckera $\mathbf{D}^{(i)} \otimes \mathbf{D}^{(k)} \otimes \mathbf{D}^{(j)}$ reprezentacji rozpinanych przez: $\Psi_m^{\ i}$, **A** oraz $\Psi_n^{\ j}$ na reprezentacje nieprzywiedlne (warunek konieczny);

dla charakterów: $\chi^{i \otimes k \otimes j}(R) = \chi^{(i)}(R)\chi^{(k)}(R)\chi^{(j)}(R)$

7. TUNELOWANIE I RÓWNOWAGA KONFORMACYJNA

8. GRUPY PI: cząsteczka A_nB_m...D_k;GRUPY MS: CH₂=CH₂, NH₃

$$2 \times 11^{1} \times 11^{1} \times ... \times 11^{1} elementody$$
1. permutadje jednakowych jęder:
(a₁a₂...a_n)(b₁b₂...b_m)... (x₁x₂... x_k)
(a₁a₂...a_n) = $\begin{pmatrix} 1 & 2 & ... & n \\ a_1 & a_2 & ... & a_n \end{pmatrix}$ n $\leq r$
2. identyczność: E
3. inwersja (tunelowanie): E*
4. złożenia E* i (y₁y₂...y_L) => (y₁y₂...y_N)*
(12 3)[x₁y₁z₁ x₂y₂z₂ xy₃z₃]=[x₃y₃z₃ xy₁z₁ xy₂z₂]
E* [X₁y₁ z₁ x₂y₂z₂ xy₃z₃]=[x₃y₃z₃ xy₁z₁ xy₂z₂]
E* [X₁y₁ z₁ x₂y₂z₂ xy₃z₃]=[x₃y₃z₃ xy₁z₁ xy₂z₂]
Przykład C₆H₆: 2×6!×6! = 1036800
elementodo
(A) etylen H(?) - C(s) = C(s) - H(2)
H(s) - H(s)
(12)(s4)(s6),...,(14)(23)(36), E; (13)(24)?
itd } 8 elementodo
IZOMORFIZM Z D₂h (bz obrdu C €C)
(B) amoniak NH₃ (protony 1, 2, 3)
G(12)* = M5(amoniak): {E, (12), (23), (13),
(12 3), (132), E*, (12)²... itd. }
IZOMORFIZM Z D₃h (ANIE C₃v)

MODEL DYFUZYJNY

funkcja autokorelacji funkcji f(y) przypadkowo zmiennej w czasie: $G(t) = \iint p(y_1)P(y_1, y_2, t) f(y_1)f(y_2)dy_1dy_2$

p(y) - prawdopodobieństwo rozkładu parametrów przestrzennych y(t)

 $P(y_1, y_2, t) - prawdopodobieństwo, że y = y_2 w chwili t jeśli y = y_1 w chwili t = 0,$ otrzymywane z rozwiązania równania dyfuzji rotacyjnej

równanie dyfuzji rotacyjnej sztywnej sfery o promieniu a:

 $\partial \psi / \partial t = (D_R / a^2) \Delta \psi$ $\Delta = (\partial^2 / \partial x^2 + \partial^2 / \partial y^2 + \partial^2 / \partial z^2)$

współczynnik dyfuzji rotacyjnej $D_R = kT/(8\pi a\eta)$

 η – współczynnik lepkości; stała Boltzmanna k = 1,38054·10²³ J/deg

 $G(t) = Aexp(-t/\tau_c)$ $\tau_c = 1/6D_R - czas korelacji;$ A= const.

- dyfuzja sztywnej elipsoidy obrotowej dwa czasy korelacji
- dyfuzja sztywnej elipsoida z trzema osiami trzy czasy korelacji
- dyfuzja cząsteczka niesztywnej w ujęciu modelu Lipari-Szabo:

 $\mathbf{G}(t) = \mathbf{G}_{o}(t)\mathbf{G}_{i}(t)$

funkcje autokorelacji: G_o - dla obrotu jako całości; G_i - dla ruchu wewnętrznego

10.

ENERGIA CZĄSTECZKI

równanie Schrödingera

$$\begin{split} & \mathsf{H}\Psi(\mathbf{r}_1,\,\mathbf{r}_2,..,\,\mathbf{r}_m,\,\mathbf{s}_1,\,\mathbf{s}_2,\,\mathbf{s}_m,\,\mathbf{R}_1,\,\mathbf{R}_2,..,\,\mathbf{R}_N,\,\mathbf{I}_1,\,\mathbf{I}_2,..,\,\mathbf{I}_N) = \mathsf{E}\Psi(\mathbf{r}_1,..,\,\mathbf{I}_N) \\ & \mathbf{r}_i,\,\mathbf{s}_i,\,\mathbf{R}_j,\,\mathbf{I}_j - \text{odpowiednio: współrzędne elektronów, spiny elektronów, współrzędne jąder, spiny jąder} \end{split}$$

energia cząsteczki

 $E = E^{e} + E^{j} = E^{e} + E^{r} + E^{v} + E^{t} + (E^{e}_{ex} + E^{j}_{ex})$

e - elektrony, j - jądra, r - rotacja cząsteczki, v – oscylacje zrębów atomowych, t – translacja, ex – oddziaływanie z polami zewnętrznymi

$\begin{aligned} & \mathsf{funkcja\,falowa} \\ \Psi = \Phi^{e}(\mathbf{r}_{1}, \, \mathbf{r}_{2}, ..., \, \mathbf{r}_{m}, \, \mathbf{s}_{1}, \, \mathbf{s}_{2}, \, \mathbf{s}_{m}) \mathsf{f}^{j}(\mathbf{R}_{1}, \, \mathbf{R}_{2}, ..., \, \mathbf{R}_{N}, \, \mathbf{l}_{1}, \, \mathbf{l}_{2}, ..., \, \mathbf{l}_{N}) \\ \mathsf{f}^{j}(\mathbf{R}_{1}, \, \mathbf{R}_{2}, ..., \, \mathbf{R}_{N}) &= \mathsf{f}^{\, \vee}(\mathsf{q}_{1}, \, \mathsf{q}_{2}, ..., \, \mathsf{q}_{3N-6}) \mathsf{f}^{\, r}(\alpha, \, \beta, \, \gamma) \mathsf{f}^{\, t}(\mathbf{R}^{sm}) \quad - \quad \text{dowolna cząsteczka} \\ \mathsf{f}^{\, j}(\mathbf{R}_{1}, \, \mathbf{R}_{2}, ..., \, \mathbf{R}_{N}) &= \mathsf{f}^{\, \vee}(\mathsf{q}_{1}, \, \mathsf{q}_{2}, ..., \, \mathsf{q}_{3N-5}) \mathsf{f}^{\, r}(\theta, \, \phi) \mathsf{f}^{\, t}(\mathbf{R}^{sm}) \quad - \quad \text{cząsteczka liniowa} \\ & \mathsf{q}_{\, k} \qquad - \, \text{współrzędne normalne} \\ & \alpha, \, \beta, \, \gamma \qquad - \, kąty \, \mathsf{Eulera} \\ & \theta, \, \phi \qquad - \, kąty \, \mathsf{sferyczne} \\ & \mathbf{R}^{sm} \qquad - \, \text{wektor położenia środka masy} \end{aligned}$

11. UKŁAD POZIOMÓW OSCYLACYJNYCH CZĄSTECZKI H₂

Herzberg G.: Molecular Spectra and Molecular Structure I. Van Nostrand Com. Inc. 1950

. ماريخ والقلاحة ولي

DIAGRAM JABŁOŃSKIEGO

Singlet Excited States

Triplet Excited States

dezaktywacja poziomu wzbudzonego P(t) = $exp[-(1/\tau_0)t]$ zasada nieoznaczoności Heisenberga $\tau_0 \delta E \ge \hbar/2$

ROZKŁAD BOLTZMANNA

poziomy oscylacyjne o degeneracji $g_v = 1$ i rotacyjne $g_j = 2J+1$

13.

Herzberg: Molecular Spectra and Molecular Structure I. Van Nostrand Com. Inc.

ODDZIAŁYWANIE PROMIENIOWANIA ELEKTROMAGNETYCZNEGO Z CZĄSTECZKAMI

14.

złota reguła Fermiego: $W_{nm} = 2\pi/\hbar(<n|H_1^0|m>)^2\rho(E_{końc.})$ przybliżenie długofalowe. $H_1(t) = -d \cdot E(t)$ E(t) = E(t)uu - wektor polaryzacji

prawdopodobieństwo (szybkość) **absorpcji** n←m oraz **emisji wymuszonej** n→m: $W_{nm} = B_{nm}\rho(v_{nm}) = (1/6\epsilon_{o}\hbar^{2})(<n|\mathbf{d}|m>)^{2}\rho(v_{nm}) = (1/6\epsilon_{o}\hbar^{2})\sum_{k}(<n|\mathbf{d}_{k}|m>)^{2}\rho(v_{nm})$ k = x, y, z $B_{nm} = B_{mn}$

wektor - operator elektrycznego momentu dipolowego:

 $\mathbf{d} = \sum_{i} q_{i} \mathbf{r}_{i} \qquad \mathbf{x}_{i} \psi = \mathbf{x}_{i} \psi; \qquad \mathbf{y}_{i} \psi = \mathbf{y}_{i} \psi; \qquad \mathbf{z}_{i} \psi = \mathbf{z}_{i} \psi$

współczynnik Einsteina emisji spontanicznej: $A_{mn} = (8\pi h/c^3) v_{nm}^3 B_{mn} = W_{mn}$

natężenie absorpcji: $I_{nm} = W_{nm}N_mhv_{nm}$ i emisji: $I_{mn} = W_{mn}N_nhv_{nm}$

indukowany moment dipolowy: $\mathbf{d} = \alpha \mathbf{E}$ $\alpha = [\alpha_{p\sigma}]$ - tensor polaryzowalności; ρ , $\sigma = x$, y, z

natężenie rozpraszania Ramana: $I_{nm} = (\pi^2 / \epsilon_o^2) I_0 (v_0 \pm v_{nm})^4 \sum_{\rho\sigma} < n |\alpha_{\rho\sigma}| m > (< n |\alpha_{\rho\sigma}| m >)^*$ reguły wyboru: $\Delta E = |E_m - E_n| = \hbar \omega = hv$ $< n |d_i| m > \neq 0$ dla i = x, y lub z $< n |\alpha_{\rho\sigma}| m > \neq 0$ dla $\rho, \sigma = x, y$ lub z $\Delta S = 0$

PARAMETRY WIDMOWE

15.

położenie linii: v, λ , \overline{v} =1/ λ dla l_{max} I_{max} położenie pasma: $[v_1 v_2]$, $[\lambda_1 \lambda_2]$, $[\overline{v}_1 \overline{v}_2]$ intensywność w maksimum: I_{max} $(1/2)I_{max}$ intensywność integralna pasma: ∫l(v)dv prawo Lamberta-Beera dla absorpcji: -dl/d1 = N_i l k k(v) - współczynnik ekstynkcji [m²]; I - natężenie wiązki; 1 - droga optyczna [m]; N_i - ilości cząsteczek w m³ transmisja: $T = I/I_0$ absorpcja (ekstynkcja): A = $-\log T = k(v) l N_i$ dla roztworów A = $-\log T = \epsilon(v) l C_i$ współczynnik ekstynkcji molowej: $\varepsilon(v) = (10/\ln 10)N_{A}k(v) [cm^{-1} litr mol^{-1}]$ $\varepsilon(v) = (10N_Ah/cln10)B_{ki}(v)$ stężenie molowe c_i = N_i/(10³N_A) [mol/litr]; liczba Avogadro N_A= 6,02252·10²³ mol⁻¹ siła (moc) oscylatora: $f_{ki} = (4\epsilon_0 mh/e^2)\int vB_{ki}(v)dv$ szerokość połówkowa: naturalna: $\delta v_{1/2} = 1/(2\pi\tau_0);$ poszerzenie dopplerowskie: $\delta v_{1/2} = (v/c) \sqrt{(8RT \ln 2)/M}$

polaryzacja przejścia (absorpcja, emisyjna): kierunek wektora elektrycznego momentu dipolowego przejścia <n|**d**|m> w układzie cząsteczki

16. SCHEMAT APARATURY SPEKTROSKOPOWEJ spektrofotometr absorpcyjny; spektrofluorymetr

17. MONOCHROMATOR *vs.* INTERFEROMETR

SPEKTROSKOPIA FOURIEROWSKA

transformata Fouriera: $F(y) = \int_{-\infty}^{+\infty} f(x) \exp(-2\pi i x y) dx$

rejestracja interferogramu:

"scan" zwierciadła ruchomego od x = 0 do X/2 z szybkością V próbkowanie A/D interferogramu w punktach t_k co 1/($2\overline{v}_{max}$) \overline{v}_{max} - zakres widma.

widmo: dyskretna transformacja Fouriera (M komórek):

 $I(\overline{\mathbf{v}}_{j}) = \sum_{k=0}^{M} \theta(t_{k})\cos(4\pi \overline{\mathbf{v}}_{j}Vt_{k})$ rozdzielczość linii: $\delta \overline{\mathbf{v}}_{1/2} = 0.7/X$ (apodyzacja)

19. ZESTAWIENIE METOD SPEKTROSKOPOWYCH

magnetyczny rezonans jądrowy NMR i magnetyczny rezonans kwadrupolowy NQR: energia ~10⁻⁶eV; v ~ MHz; λ ~ m

elektronowy rezonans paramagnetyczny EPR: energia ~10⁻⁴eV; v ~ GHz; λ ~ cm

absorpcja w zakresie mikrofal MV i rozproszenie Ramana: energia ~10⁻³ eV; ∇ ~10⁻¹ ÷ 10² cm⁻¹ (v ~ 10⁹ ÷ 10¹² Hz); λ ~ mm i cm

absorpcja w podczerwieni IR: energia ~10⁻¹eV; \overline{v} ~10⁴ ÷ 10² cm⁻¹ (v ~10¹² ÷ 10¹⁴Hz); $\lambda \sim \mu m$

wibracyjny dichroizm kołowy VCD: przejścia jak w IR rozproszenie i rezonansowe (RR) rozproszenie Ramana: przejścia jak w IR rozproszenie z pomiarem aktywności optycznej Ramana ROA: przejścia jak w IR absorpcja w zakresie widzialnym i bliskiego nadfioletu UV-VIS: energia ~10 eV; zakres widzialny $\lambda = 400 \div 800$ nm, nadfiolet $\lambda = 100 \div 400$ nm; v ~ $10^{14} \div 10^{15}$ Hz (\overline{v} ~ 10^5 cm⁻¹ ÷ 10^4 cm⁻¹)

dichroizm kołowy CD: przejścia jak w UV VIS dichroizm liniowy LD: przejścia jak w UV VIS fotoluminescencja: przejścia jak w UV VIS spektroskopia elektronowa XPS: promieniowanie X ~1,5 keV; przejścia 10 ÷ 10³eV spektroskopia Mössbauera: promieniowanie γ

20. IR I RAMAN CZĄSTECZEK DWUATOMOWYCH

energia rotacyjna (rotator sztywny): $E_{I}^{r} = (\hbar^{2}/2I)J(J+1)$, J = 0, 1, 2, ..., degeneracja g=2J+1**funkcja falowa** (harmoniki sferyczne): $Y_{M}^{J}(\theta, \phi)$ moment bezwładności: I = μR_{e}^{2} masa zredukowana: $\mu = M_1 M_2 / (M_1 + M_2)$ odległość atomów: R_e energia [cm⁻¹]: F(J)=BJ(J+1); stała rotacyjna: $B=h/(8\pi^2 cI)$ energia oscylacyjna (oscylator harmoniczny): $E^v = h_{v_{osc}}(v + \frac{1}{2})$ v = 0, 1, 2, ...,**funkcja falowa** (wielomiany Hermite'a): $N_v exp[-(\frac{1}{2})\alpha x^2]H_v(\sqrt{\alpha}x)$ $\alpha = 4\pi\mu v_{osc}h^{-1}$ $v_{osc} = (1/2\pi) \sqrt{f/\mu}$ V=(1/2)f(R - R_e)² = (1/2)fx²; stała siłowa: f = $\frac{\partial^2 V}{\partial x^2}$ dla x = 0 energia [cm⁻¹]: $G(v) = \varpi_e (v + \frac{1}{2}) \quad \varpi_e = v_{osc}/c$ **WIDMO** [cm⁻¹]: $\overline{v} = [G(v') + F(J')] - [G(v'') + F(J'')]$ $\Delta v = v' - v'' = +1$ absorpcja IR i Raman **ABSORPCJA**: $\Delta J = J' - J'' = \pm 1$; gałąź R $\Delta J = \pm 1$, gałąź P $\Delta J = -1$ **RAMAN**: $\Delta J = J' - J'' = \pm 2$; gałąź S $\Delta J = \pm 2$; gałąź O $\Delta J = -2$; $\Delta J = 0$ gałąź Q siła odśrodkowa: F = $\mu \omega^2 R$; anharmoniczność: V = $(\frac{1}{2})fx^2 + gx^3 - jx^4$ $F(J) = B_y J(J + 1) - D_y J^2 (J + 1)^2 + .., \qquad B_y = (h/(8\pi^2 c) < 1/l >_v \qquad D_y < 10^{-4} B_y$ $G(v) = \varpi_e(v + \frac{1}{2}) - \varpi_e x_e(v + \frac{1}{2})^2 + \varpi_e y_e(v + \frac{1}{2})^3 + \dots \text{ nadtony: } \Delta v = +2, +3,\dots$

21. WIDMO ABSORPCYJNE IR CZĄSTECZKI HC

Alpert et al. Spektroskopia w podczerwieni PWN 1974

gałąź R, $\Delta J = +1$

 $\bar{v}_{R} = \bar{v}_{10} + 2B'_{v} + (3B'_{v} - B''_{v})J + (B'_{v} - B''_{v})J^{2}$ J = J'' = 0, 1, 2, 3,...

 $gałąź P, \Delta J = -1$ $\bar{v}_{P} = \bar{v}_{10} - (B'_{v} + B''_{v})J + (B'_{v} - B''_{v})J^{2} \qquad J = 1, 2, 3,...$

WIDMO RAMANOWSKIE CZĄSTECZKI N₂

22.

Bendtsen J. Raman Spectroscopy 2, 133, 1974

23. RUCH DRGAJĄCY CZĄSTECZKI WIELOATOMOWEJ

układ równań Lagrange'a (bezwymiarowe współrzędne kartezjańskie):

$$\begin{aligned} \mathbf{d}(\partial T/\hat{c}_{q_{i}})/\mathrm{d}t + \partial V/\partial q_{i} = 0 \qquad \mathbf{k} \qquad \mathbf{k}$$

drgania asymetryczne cząsteczek symetrycznych: $\partial \mathbf{d}/\partial \mathbf{Q} \neq \mathbf{0}$

24. DRGANIA NORMALNE CZĄSTECZEK: DWUTLENEK WĘGLA CO₂ I AMONIAK NH₃

25. WIDMO ABSORPCYJNE IR CZĄSTECZKI AMONIAKU NH₃

Alpert et al. Spektroskopia w podczerwieni PWN 1974

26. PORÓWNANIE CZĘSTOŚCI NORMALNYCH I GRUPOWYCH W ACETYLENIE

27. ZESTAWIENIE CZĘSTOŚCI GRUPOWYCH

Herzberg Molecular Spectra and Molecular Structure II Van Nostrand Comp. Inc. 1950

MOMENT BEZWŁADNOŚCI I ENERGIA **KUIACJI CZĄJICZI** tensor momentu bezwładności po diagonalizacji (osie główne) I = $\begin{bmatrix} I_X & 0 & 0 \\ 0 & I_Y & 0 \\ 0 & 0 & I_Z \end{bmatrix}$ **ROTACJI CZĄSTECZKI**

rotator liniowy: $I_x = I_y = I$, $I_z = 0$ $f^{r} = Y_{M}^{J}(\theta, \phi)$ $F(J) = B_v J(J + 1) - D_v J^2 (J + 1)^2 + \dots$ $B_v = h/(8\pi^2 cI)$ degeneracja $g_1 = 2J + 1$

28.

rotator **sferyczny**: $I_X = I_Y = I_Z = I$ $f^{r} = \sqrt{\frac{2J+1}{8\pi^{2}}} \mathcal{D}_{MK}^{J}(\alpha,\beta,\gamma)$ $F(J) = B_{J}J(J + 1) - D_{J}J^{2}(J + 1)^{2} + \dots$ $B = h/(8\pi^2 cI)$ degeneracja $g_1 = (2J + 1)^2$

rotator symetryczny $I_x = I_y, I_z$ $F(J,K)=B_{V}J(J+1)+(A_{V}-B_{V})K^{2}-D_{V}J^{2}(J+1)^{2}-D_{V}K^{2}J(J+1)K^{2}-D_{V}K^{4}+...K=0,1,..,J$

$$f^{r} = \sqrt{\frac{2J+1}{8\pi^{2}}} \mathcal{D}_{M0}^{J}(\alpha,\beta,\gamma) \quad K = 0; \quad f_{\pm}^{r} = \sqrt{\frac{2J+1}{8\pi^{2}}} \left\{ \mathcal{D}_{MK}^{J}(\alpha,\beta,\gamma) \pm \mathcal{D}_{M-K}^{J}(\alpha,\beta,\gamma) \right\} \quad K \neq 0$$

 $B = h/(8\pi^2 cl_x)$, $A = h/(8\pi^2 cl_z)$ degeneracja $g_1=2(2J + 1)$

rotator **asymetryczny**: $I_X \neq I_Y \neq I_Z$

F(J) - brak ogólnego wzoru analitycznego; wyznaczane niezależnie dla poszczególnych wartości J

29. SPRZĘŻENIE OSYLACJI I ROTACJI; PODWOJENIE L

30. PASMO PROSTOPADŁE BĄKA SYMETRYCZNEGO

pasmo \perp reguly wyboru: $\Delta K = \pm 1 \quad \Delta J = 0, \pm 1$

seria linii Q oddalonych (w przybliżeniu) o:

 $2[A_v(1-\xi)-B_v]$ stała Coriolisa $\xi_4 = -0,26$

31. STRUKTURA ROTACYJNA PASMA v_4 METANU

32. WIBRACYJNY DICHROIZM KOŁOWY VCD

widma L-Ala-L-Ala i L-Ala-D-Ala: Roberts et al. J. Am. Chem. Soc. 110, 1749, 1988

skręcenie płaszczyzny polaryzacji: $\alpha = [\alpha]_{\lambda}^{T} \ 1 \ c_{i}$ [α]_{λ}^T - skręcalność właściwa; 1 - droga optyczna; c_i - stężenie molowe

dichroizm kołowy:
$$\Delta \varepsilon = \varepsilon_{L} - \varepsilon_{R}$$
 (~ 10⁻⁵)

siła rotacyjna:

 $\mathsf{R}_{\mathsf{mn}} = \frac{3\hbar c \varepsilon_0 \ln 10}{10\pi \mathsf{N}_{\mathsf{A}}} \int_{\varepsilon}^{\Delta \varepsilon} \mathsf{d}_{v} = \mathsf{Im}(<\mathsf{n}|\mathbf{d}|\mathsf{m}><\mathsf{m}|\mathbf{m}|\mathsf{n}>)$

WIDMO ROA CZĄSTECZKI L-Ala–L-Ala

33.

Hecht & Barron Faraday Discuss. 99, 35, 1994

ZASADA FRANCKA – CONDONA

Paszyc Podstawy fotochemii PWN 1981

35. STRUKTURA OSCYLACYJNA: AgCI (900°C), CO, ORAZ ROTACYJNA: AIH PRZEJŚCIA ELEKTRONOWEGO

Herzberg Molecular Spectra and Molecular Structure I, Van Nostrand Comp. Inc. 1950

przykładowe przejście elektronowe (poziomy S = 0):

 $\widetilde{\mathsf{A}}^{1}\boldsymbol{\Sigma}^{\mathsf{+}} \leftarrow \widetilde{\mathsf{X}}^{1}\boldsymbol{\Sigma}^{\mathsf{+}}$

 $\Delta J = 0, \pm 1$ przy zakazie przejścia $J = 0 \leftrightarrow J = 0$

 $\Delta J = \pm 1$ jeśli w obu stanach elektronowych $\Omega = 0$

DIAGRAM KASHA

37. PRZEJŚCIA ELEKTRONOWE W FORMALDEHYDZIE

 $H_2C = O$ grupa symetrii C_{2V}

elektronowy stan podstawowy: ${}^{1}A_{1}$ (1A₁)²(2A₁)²(3A₁)²(1B₂)²(4A₁)²(5A₁)²(1B₁)²(2B₂)² powłoki $\sigma_{C-H} \sigma_{C=O} n_{O} \pi_{C=O} n_{O}$ wewnętrzne

elektronowy stan wzbudzony: ${}^{1}A_{2}$ $(1A_{1})^{2}(2A_{1})^{2}(3A_{1})^{2}(1B_{2})^{2}(4A_{1})^{2}(5A_{1})^{2}(1B_{1})^{2}(2B_{2})^{1}(2B_{1})^{1}$ $\pi_{c=0}^{*}$ przejście 295 nm: $\widetilde{A} {}^{1}A_{2} \leftarrow \widetilde{X} {}^{1}A_{1}$ $n \rightarrow \pi^{*}$ elektronowy stan wzbudzony: ${}^{1}A_{1}$ $(1A_{1})^{2}(2A_{1})^{2}(3A_{1})^{2}(1B_{2})^{2}(4A_{1})^{2}(5A_{1})^{2}(1B_{1})^{1}(2B_{2})^{2}(2B_{1})^{1}$ $\pi_{c=0}^{*}$ przejście 185 nm: $\widetilde{B} {}^{1}A_{2} \leftarrow \widetilde{X} {}^{1}A_{1}$ $\pi \rightarrow \pi^{*}$

38. PASMA ABSORPCYJNE BENZENU W NADFIOLECIE

Becker Theory and Interpretation of Fluorescence and Phosphorescence Wiley Intersci. 1969

39. STRUKTURA OSCYLACYJNA PASMA α BENZENU

40. DEZAKTYWACJA STANÓW WZBUDZONYCH CZĄSTECZKI

41. PORÓWNANIE WIDM ABSORPCJI I FLUORESCENCJI:

(a) fluoresceina Nichols & Merritt Phys. Rev. 31, 376, 1910; (b) antracen Kortum & Finkch Z. Phys. Chem. B62, 263, 1942; (c) i (d) difenylooktatetren Hausser et al. Z. Phys. Chem. B29, 417, 1935

42. PARAMETRY WIDMOWE FOTOLUMINESCENCJI

wydajność kwantową fluorescencji: $\Phi_{\rm F} = I_{\rm F}/I_{\rm A}$ prawo Lamberta-Beera dla emisji: $I_{\rm F} = 0.1 \ln 10 \Phi_{\rm F} I_{\rm o} \epsilon(v) c_{\rm i} l$ widmo wzbudzenia: $I'_{F}(v) = \varepsilon(v)\Phi_{F}$ v - częstość wzbudzenia $d[S_1]/dt = -k_{E}[S_1] \qquad I_{E} = [I_{E}]^{0}exp(-k_{E}t)$ $1/k_{\rm F} = \tau_{\rm r}$ radiacyjny czas życia stanu wzbudzonego S₁ $1/\tau = k_{F} + k_{IC} + k_{ISC} + k_{q}[A]$ czas życia stanu S₁ $\Phi_{\rm F} = k_{\rm F}/(k_{\rm F} + k_{\rm IC} + k_{\rm ISC} + k_{\rm g}[{\rm A}]) \qquad \tau = \tau_{\rm r} \Phi_{\rm F}$ wygaszanie dynamiczne: $\Phi_{F}^{0}/\Phi_{F} = I_{E}^{0}/I_{E} = 1 + K_{SV}[A]$ stała Sterna-Volmera $K_{SV} = k_{\alpha}\tau_{\alpha}$ $k_{_{\rm a}}$ - stała wygaszania (~10^{10}\,M^{-1}{\rm s}^{-1})~\tau_{_0}^{} - czas życia przy braku wygaszania wygaszanie statyczne: $I_{e}^{0}/I_{e} = 1 + K_{as}[A]$ stała asocjacji $K_{as} = [AS]/([A][S])$ wydajność przejścia ISC: $\Phi_{ISC} = k_{ISC}/(k_F + k_{IC} + k_{ISC} + k_{ISC})$ wydajność fosforescencji: $\Phi_{\rm P} = k_{\rm P} \Phi_{\rm ISC} / (k_{\rm P} + k'_{\rm IC} + k_{\rm a} + k_{\rm c} [A])$ $k_{p} = 1/\tau'_{r}$, τ'_{r} - radiacyjny czas życia stanu T_{1} $1/\tau' = k_p + k'_{IC} + k_a + k_a[A]$ czas życia stanu T₁ $\Phi_p/\Phi_{ISC} = \tau'/\tau'_r$ fotoluminescencja sensybilizowana: $A(S_0) + D^*(S_n) \rightarrow A^*(S_1) + D(S_0) \rightarrow A(S_0) + hv_E$ $A(S_0) + D^*(T_1) \rightarrow A^*(T_1) + D(S_0) \rightarrow A(S_0) + hv_p$ **fluorescencja opóźniona typu E:** $T_1 \rightarrow S_1 \rightarrow S_0 + hv_F$ **fluorescencja opóźniona typu P**: $T_1 + T_1 \rightarrow S_0 + S_1 \rightarrow S_0 + hv_F$

43. REZONANSOWY PRZEKAZ ENERGII WZBUDZENIA FRET $D^* + A \rightarrow D + A^*$

prawdopodobieństwo przekazu na jednostkę czasu:

 $W_{D^* \rightarrow A} = (2\pi/h)|(\Psi_{D^*A}|\mathbf{H}_1|\Psi_{DA^*})|^2 \rho = (2\pi/h)\beta^2 \rho$ $\mathbf{H}_1 = 1/r_{12}$ - oddziaływanie Coulomba elektronów D i A odległych o r_{12}

funkcje falowe: $\Psi_{D^*A} = (1/\sqrt{2}) \{ \Psi_{D^*}(1) \Psi_A(2) - \Psi_{D^*}(2) \Psi_A(1) \}$ $\Psi_{DA^*} = (1/\sqrt{2}) \{ \Psi_D(1) \Psi_{A^*}(2) - \Psi_D(2) \Psi_{A^*}(1) \}$

całka rezonansowa $\beta = \beta_{c} + \beta_{EX}$ Coulomba $\beta_{c} = \{\Psi_{D^{*}}(1)\Psi_{A}(2)|1/r_{12}|\Psi_{D}(1)\Psi_{A^{*}}(2)\}$ wymienna $\beta_{EX} = -\{\Psi_{D^{*}}(1)\Psi_{A}(2)|1/r_{12}|\Psi_{D}(2)\Psi_{A^{*}}(1)\}$

szybkość transferu Coulomba: $k^{C}_{D^{*}\rightarrow A} = \tau^{-1}(R_{0}/r)^{s}$ s = 6 dla oddziaływania dipol – dipol τ, τ' - czas życia donora bez, oraz z akceptorem odległość krytyczna: $R_{0}^{6} \sim \int F_{D}(v)\epsilon_{A}(v)v^{-4}dv$ wydajność transferu E = 1 – F_{DA}/F_{D} = 1 – τ'/τ

 F_{D} , F_{DA} - fluorescencja donora, bez i z akceptorem

szybkość transferu wymiennego:

 $k^{\text{EX}}_{\text{D}^* \rightarrow \text{A}} = \tau^{-1} \text{exp}[-\gamma(r - R_0)] \quad \gamma \sim \int F_{\text{D}}(\nu) \epsilon_{\text{A}}(\nu) d\nu$

44.

POLARYZACJA EMISJI

stopień polaryzacji: $p = (I_E^{\parallel} - I_E^{\perp})/(I_E^{\parallel} + I_E^{\perp})$

nierotujące czasteczki:

maksymalne p = 1/2 dla wzbudzanych światłem spolaryzowanym liniowo maksymalne p = 1/3 dla wzbudzenia wzbudzanych światłem niespolaryzowanym

rotujące czasteczki; maksymalnych p dla kąta 90 deg między momentami dipolowymi:

p = -1/3 dla wzbudzenia spolaryzowanego liniowo

p = -1/7 dla wzbudzenia niespolaryzowanego

anizotropia emisji: $r = (I_E^{\parallel} - I_E^{\perp})/(I_E^{\parallel} + 2I_E^{\perp})$

45. FOTOLUMINESCENCJA NIESTACJONARNA

EKSPERYMENTY CZASOWO-ROZDZIELCZE

techniki impulsowe (impuls h(t)):

 $g(t) = \int_{0}^{t} h(t') I_{E}(t - t') dt'$

zaniku fluorescencji:

 $I_{E}(t) = \sum_{i} \alpha_{i} \exp(t / \tau_{i})$

anizotropia emisji (wzór Perrina)

$$r = (2/5)(3/2\cos^2\beta - 1/2) \subseteq [0.4, -0.2]$$

β - kąt między momentami A i E

$$r(t) = \sum_{i=1}^{5} r_{0i} \exp(t / \xi_i)$$
 3 czasy korelacji τ_{ci}

FLUORESCENCJA KORELACYJNA FCS współczynnik dyfuzji translacyjnej: $D \sim L^2/\tau$ L [µm]

46. WIDMA DICHROIZMU KOŁOWEGO CD

J. Brahms & S. Brahms Biological Macromol. 4, 191, 1970

Fig. 5. The CD and absorption spectra of derivatives of uracil in 0.01M sodium phosphate buffer, pH 7.0. (a) CD of uridine 5'-phosphate, (b) CD of uridine, (c) CD of deoxyuridine, (d) CD of deoxyuridine 5'-phosphate, and (e) absorption of deoxyuridine 5'-phosphate.

47. REZONANSOWY EFEKT RAMANA widmo UMP: Ziegler et al. Biopolymers 23, 2067, 1984

intensywność rozproszenia Ramana $I_{nm} = (\pi^2 / \epsilon_o^2) I_o (\nu_o \pm \nu_{nm})^4 \sum_{\rho\sigma} <n|\alpha_{\rho\sigma}|m> (<n|\alpha_{\rho\sigma}|m>)^*$ $\rho, \sigma=x, y, z$

<n|α_{ρσ}|m>=

$$\frac{1}{\hbar} \sum_{k} \left\{ \frac{\langle n \mid d_{\sigma} \mid k \rangle \langle k \mid d_{\rho} \mid m \rangle}{\omega_{km} - \omega_{0} + \frac{1}{2}\Gamma_{k}} + \frac{\langle n \mid d_{\rho} \mid k \rangle \langle k \mid d_{\sigma} \mid m \rangle}{\omega_{km} + \omega_{0} + \frac{1}{2}\Gamma_{k}} \right\}$$

$$\Gamma_{k} = 1/\tau_{k}$$

ZASTOSOWANIA NMR

Badanie materii skondensowanej analiza "szerokich" linii NMR

Obrazowanie tkanek i narządów wewnętrznych w żywych organizmach -"magnetic resonance imaging" (MRI)

Wyznaczanie struktur, dynamiki i własności fizyko-chemicznych cząsteczek organicznych w roztworze - widma cH2 wysokiej zdolności rozdzielczej Śledzenie procesów biochemicznych w żywych komórkach - *in vivo* NMR, "in cell" NMR

Wyznaczanie struktur i dynamiki biopolimerów w roztworze

Komputery kwantowe

49. EKSPERYMENT STERNA - GERLACHA (1921 r.)

wiązka atomów srebra w niejednorodnym polu magnetycznym

50. TEORETYCZNE PODSTAWY NMR (ujęcie kwantowe)

jądrowy moment magnetyczny: $\mu = \gamma \hbar I$ $I \neq 0$

γ – współczynnik żyromagnetyczny

energia jądra w stałym polu magnetycznym B₀:

$$E_m = -\mu \cdot B_0 = -|\gamma|\hbar B_0 m$$
 $m = -I, -I + 1, ..., +I$

reguła wyboru:

$$\Delta m = +1 \quad E_{m-1} - E_m = \hbar \omega_0$$

częstość rezonansowa: $\omega_0 = |\gamma|B_0$

równanie Schrödingera: i
$$\frac{\partial \Psi}{\partial t} = \{\omega_0 \mathbf{I}_z + \omega_1 (\mathbf{I}_x \cos \omega t + \mathbf{I}_y \sin \omega t)\}$$
 $\omega_1 = |\gamma| \mathbf{B}_1$

 $Ψ(t) = exp(iωtI_z)exp(iΩtn·I)Ψ(0)$ pole efektywne: $B_{ef} = (B_0 + ω/γ) + B_1$

$$\Omega = -(\frac{\gamma}{|\gamma|})[(\omega_0 - \omega)^2 + \omega_1^2]^{1/2} \quad \mathbf{n} = (\sin\Theta, 0, \cos\Theta) \quad \text{tg}\Theta = \omega_1/(\omega_1 - \omega)$$

51. REZONANS MAGNETYCZNY JĄDRA O SPINIE I = 1/2

52. PARAMETRY JĄDER W SPEKTROSKOPII NMR częstotliwości rezonansowe dla pola o indukcji B = 2,35 T

obsadzenie			spin			częstość	
TTT	00.08			1/2		1.000	100
2D	99,98	1	1	1/2	2,193	1,000	15 4
	1,50.10-2			2/2	0,857	9,64.10	15,4
'LI	92,57	3	4	3/2	5,250	0,294	38,8
Be	100	4	5	3/2	-1,1//	1,39.10 -	14:-)
11D	18,83	2	5	3	1,801	1,99.10	10,7
-B	81,17	2	0	3/2	2,088	0,165	32,2
12C	98,89	6	6	0	0.500	1 50 10 1	
13C	1,108	6	7.	1/2	0,702	$1,59 \cdot 10^{-2}$	25,1
14N	99,635	_ 7 _		1	0,404	$1,01 \cdot 10^{-3}$	7,2
15N	0,365	7	8	1/2	0,283	1,04 .10 -3	10,1
¹⁶ O	99,96	8	8	0	-		
170	3,7.10-2	8	9	5/2	-1,893	$2,91 \cdot 10^{-2}$	13,5
19F	130	9	10	1/2	2,627	0,834	94,0
28Na	100	11	12	3/2	2,216	9,27 .10 -2	26,5
24Mg	89,9	12	12	0			
²⁵ Mg	10,05	12	13	5/2.	0,855	2,68 .10 -2	6,1
27A1	100	13	14	5/2	3,639	0,207	26,0
28Si	95,3	14	14	0			
²⁹ Si	4,70	14	15	1/2	0,555	7,85 .10 -2	19,9
31P	100	15	16	1/2	1,131	6,64 .10 -2	40,5
82S	99,26	16	16	0			
83S	0,74	16	17	3/2	0,643	2,26 .10 -3	7,67
85Ci	75,4	17	18	3/2	9,821	4,71 .10 -3	9,79
37Cl	24,6	17	20	3/2	0,683	2,72.10-3	8,15
39K	93,08	19	20	3/2	0,391	5,08 .10 -4	4,67
75As	100	33	42	3/2	1,435	2,51 .10 -2	17,1
⁷⁹ Br	50.57	35	44	3/2	2,099	7,86.10-2	25,1
⁸¹ Br	49,43	35	46	3/2	2,263	9,84 .10 -2	27,0
115Sn	0.35	50	65	1/2	-0,913	3,50.10-2	31,1
117Sn	7.67	50	67	1/2	-0.995	4,53 .10 -2	37,0
119Sn	8.68	50	69	1/2	-1.041	5,18.10-2	37,6
199Hg	16.86	80	119	1/2	0.499	5.72 .10 -3	17,9
20140	13.24	80	121	3/2	-0.607	1.90.10-3	7.24
116	13924		121	1012	0,007		
			1 contraction of the	1		the second se	

54. MAKROSKOPOWY UKŁADU JĄDER (ujęcie klasyczne)

makroskopowa magnetyzacja n jąder w próbce: $\mathbf{M} = \sum_{i} \boldsymbol{\mu}_{j}$

stan równowagi:
$$M_o = n\gamma\hbar \frac{\sum_{m=-l}^{l} m \exp(\gamma m\hbar H_o / kT)}{\sum_{m=-l}^{l} \exp(\gamma\hbar m H_o / kT)} = \chi H_o \qquad \chi = \frac{n\gamma^2 \hbar^2 l(l+1)}{3kT}$$

równania Blocha:

$$\frac{d\mathbf{M}}{dt} = \gamma \mathbf{M} \times \mathbf{B} - \frac{M_x \mathbf{i}_x + M_y \mathbf{i}_y}{T_2} - \frac{(M_z - M_0) \mathbf{i}_z}{T_1}$$
$$M_z = \frac{1 + [(\omega - \omega_0) T_2]^2 M_0}{1 + [T_2(\omega - \omega_0)]^2} \quad M_x' = \frac{(\omega - \omega_0) \gamma B_1 T_2^2 M_0}{1 + [T_2(\omega - \omega_0)]^2} \quad M_y' = \frac{\gamma}{|\gamma|} \frac{\gamma B_1 T_2 M_0}{1 + [T_2(\omega - \omega_0)]^2}$$
szerokość połówkowa
$$v_{1/2} = \frac{1}{\pi T_2}$$

$$M_{x} = M_{x}^{2}\cos(\omega t) + \frac{\gamma}{|\gamma|}M_{y}^{2}\sin(\omega t) \qquad M_{y} = -\frac{\gamma}{|\gamma|}M_{x}^{2}\sin(\omega t) + M_{y}^{2}\sin(\omega t)$$

55. EKSPERYMENT 1D NMR: Zastosowanie transformacji Fouriera

Wüthrich K. et al., J. Mol. Biol. (1982) 155, 311-319

56. MAKROSKOPOWY UKŁADU JĄDER (ujęcie kwantowe)

$$ih\frac{d\rho}{dt} = [\mathbf{H}, \rho] - \mathbf{R}(\rho - \rho_0)$$
$$\mathbf{H} = \sum_{j=1}^{N} h\omega_j \mathbf{I}_{zj} + \sum_{i \langle j} hJ(i, j) \mathbf{I}_i \cdot \mathbf{I}_j + h\gamma \mathbf{B}_1(t) \cdot \sum_{j=1}^{N} \mathbf{I}_j$$

przesunięcia chemiczne jąder przełanianych przez elektrony cząsteczki: sprzężenia skalarne oddz między jądrami zmie przez elektrony wiązań

oddziaływanie ze zmiennym polem B₁

R - macierz relaksacji układu określona przez czasy relaksacji T₁ i T₂

$$\rho(t_p) = \exp(-i\gamma B_1 t_p \sum_{j=1}^{N} I_{sj}) \rho \exp(i\gamma B_1 t_p \sum_{j=1}^{N} I_{sj}) \quad s=x, y$$

działanie impulsu wzbudzającego długości t_p zmiennego pola B₁

$$M_{x}(t) = N\gamma hTr\{\sum_{k=1}^{N} I_{kx}\rho(t)\}$$
$$M_{y}(t) = N\gamma hTr\{\sum_{k=1}^{N} I_{ky}\rho(t)\}$$
obserwable wyznaczające widmo NM

obserwable wyznaczające widmo NMR dla układu N jąder cząsteczki o danym γ i stężeniu *N*.

57. ODDZIAŁYWANIA JĄDRO - JĄDRO I JĄDRO -ELEKTRON: WIDMA W CIELE STAŁYM

bezpośrednie oddziaływanie dipolowo-dipolowe $H_{DD} = \frac{\mu_0 \hbar^2}{4\pi} \sum_{q < p} \{ \frac{\mu_q \mu_p}{r_{qp}^3} - \frac{3(\mu_q r_{qp})(\mu_p r_{qp})}{r_{qp}^5} \}$ $\upsilon = \upsilon_0 \pm \frac{1}{2} \Delta_{DD} (3\cos^2\theta - 1) \qquad \theta - kąt między r_{12} a B_0$ $\Delta_{DD} = \frac{\mu_0 \hbar^2}{4\pi} \gamma_1 \gamma_2 r_{12}^3 \sim 10^4 - 10^5 \text{ Hz}$

ekranowanie jąder przez elektrony: $H_{cs} = \mu_q \sigma B_0$ $\sigma = \sigma E + \sigma_{csA} \sigma = 1/3(\sigma_{11} + \sigma_{22} + \sigma_{33})$ E-macierz jednostkowa $(\sigma_{csA})_{ij} \sim 3\cos^2\theta_j - 1 \sim 10^3$ Hz, θ_j - kąty B_0 /osie główne σ

sprzężenie skalarne: $H_{sc} = \mu_q J \mu_p$

oddziaływanie kwadrupolowe jąder l \geq 1

$$\upsilon = \upsilon_0 \pm \frac{1}{2} \Delta_Q (3\cos^2 \theta - 1)$$
 $\Delta_Q = \frac{3}{4} \frac{eQ}{h} \frac{d^2 V}{dz^2} \sim 10^5 - 10^6 \text{ Hz}$

Q-moment kwadrupolowy; d²V/dz² gradienty pól

2 - 20 -

58. WIDMA W GAZACH, CIECZACH I ROZTWORACH

$$<3\cos^2\theta - 1>_{\theta\phi} = 0$$

częstości rezonansowe: $\omega = |\gamma|B = |\gamma|(1 - \sigma)B_0$

 σ - stała ekranowania

przesunięcie chemiczne:

 $\delta = \frac{\omega(jadro) - \omega(wzorzec)}{\omega(wzorzec)} \times 10^6$ [ppm]

$$\delta = \delta_{d}(lok) + \delta_{p}(lok) + \delta_{anizotropia} + \delta_{oddziaływania}$$

sprzężenie skalarne

$$\mathbf{H}_{sc} = \mathbf{J}_{qp} \, \boldsymbol{\mu}_{q} \, \boldsymbol{\mu}_{p}$$

J_{qp} - stała sprzężenia między jądrami p i q [Hz]

59. WIDMO ¹H NMR KWASU BROMOPROPIONOWEGO

Przesłanianie protonów przez elektrony: przesunięcia chemiczne δ

Struktura multipletowa sygnałów: skalarne stałe sprzężenia J

60. PODSTAWY TEORETYCZNE WIDM "HIGH RESOLUTION"

$$\begin{split} h^{-1}\mathbf{H} &= -(1/2)\sum_{j=1}^{N}\gamma_{j}B_{0}\left(1-\sigma_{j}\right)\mathbf{I}_{zj} + \sum_{k$$

baza funkcyjna hamiltonianu **H**: $|I,M\rangle = |I_1,m_1\rangle |I_2,m_2\rangle ... |I_N,m_N\rangle$

$$I_{j^{2}}|I_{j},m_{j}\rangle = I_{j}(I_{j} + 1)|I_{j},m_{j}\rangle$$
 $F_{z} = \sum_{j=1}^{N} I_{zj}$
 $[H, F_{z}] = 0$
 $F_{z}|I,M\rangle = M|I,M\rangle$
 $M = \sum_{j=1}^{N} m_{j}$

prawdopodobieństwo (na jednostkę czasu) przejścia $W_{M'n'M''n''} \sim |<M', n'| \mathbf{F}^- |M'', n>|^2 \mathbf{F}^- = \sum_{j=1}^N \mathbf{I}_j^$ reguła wyboru: $\Delta M = M' - M'' = \mp 1$

 $v = (1/h)(E_{M'n'} - E_{M''n''})$ przejścia jednokwantowe

przybliżenie: $J_{kl}/(v_k - v_l) \rightarrow 0$ energie poziomów oraz reguła wyboru $h^{-1}E = \sum_{j=1}^{N} v_j m_j + \sum_{k < l} \sum J_{kl} m_k m_l$ $\Delta m_i = \mp 1 \Delta m_k = 0 \text{ dla } k \pm i$

WIDMO ¹H NMR o-DIBROMOBENZENU

61.

Castellano & Kostelnik Tetrahedron Letters (1967) 5211

62. NMR PRZY WYMIANIE CHEMICZNEJ MIĘDZY DWOMA STANAMI (bez i ze sprzężeniem)

Vasavada et al. J. Inorg. Biochem. 21, 323, 1984

63. PODSTAWY RELAKSACJI JĄDROWEJ

POMIAR CZASÓW RELAKSACJI

 $[\pi/2 - t - \pi - t - echo(FID) - T_{del} -]_n$

 $M_z = M_0 exp(-2t/T_2)]$

$$[\pi - t - \pi/2(FID) - T_{del} -]_n$$

 $M_z = M_0[1 - 2exp(-t/T_1)]$

65. NOE W UKŁADZIE DWUSPINOWYM

 $dI_{z}/dt = -\rho_{I}(I_{z} - I_{0}) - \sigma_{IS}(S_{z} - S_{0})$ $dS_{z}/dt = -\rho_{I}(S_{z} - S_{0}) - \sigma_{IS}(I_{z} - I_{0})$ $dM/dt = R(M_{z} - M_{0})$

 $\rho_1 = 1/T_{11} = 2W_1^{-1} + W_0 + W_2^{-1} T_{11} - czas relaksacji podłużnej I$ $<math>\rho_s = 1/T_{1s} = 2W_1^{-s} + W_0 + W_2^{-1} T_{1s} czas relaksacji podłużnej S$ $\sigma_{1s} = W_2 - W_0$

dyfuzja rotacyjna, sztywna sfera, czas korelacji τ_c $W_1^{-1} = (3/20)(\mu_0/4\pi)2\gamma_1^2\gamma_S^2\hbar^2r_{1S}^{-6} \frac{\tau_c}{1+\omega_1^2\tau_c^2}$ $W_1^{-S} = (3/20)(\mu_0/4\pi)2\gamma_1^2\gamma_S^2\hbar^2r_{1S}^{-6} \frac{\tau_c}{1+\omega_S^2\tau_c^2}$ $W_0 = (1/10)(\mu_0/4\pi)2\gamma_1^2\gamma_S^2\hbar^2r_{1S}^{-6} \frac{\tau_c}{1+(\omega_1-\omega_S)^2\tau_c^2}$ $F_1(S) = \frac{(W_2 - W_0)S_0}{(2W_1^1 + W_2 + W_0)l_0}$ stacjonarność: dl_z/dt = 0 $f_1(S) = \frac{\sigma_{1S}}{\rho_1}[1 - \exp(\rho_1 t)]$ gudowanie" NOE $W_2 = (3/5)(\mu_0/4\pi)2\gamma_1^2\gamma_S^2\hbar^2r_{1S}^{-6} \frac{\tau_c}{1+(\omega_1+\omega_S)^2\tau_c^2}$ $Cross - peaks NOESY: a_{ij}(t_m) = \frac{n_j}{N}[\exp(-Rt_m)]_{ij}M_0$ $\Sigma_j n_j = N$ $n_j - ilość jąder równoważnych magnetycznie grupie j - tej$

66.

SPEKTROSKOPIA EPR

 $\mu_e = -\gamma_e \hbar S$ $\gamma_e = -g_e \beta/\hbar$ β - magneton Bohra, czynnik Landego $g_e = 2.003$

funkcje i energie własne Hamiltonian elektronu w polu o indukcji B₀

 $\alpha = |\frac{1}{2}, \frac{1}{2} > E = +\frac{1}{2}\gamma_{e}\hbar B_{0}$ $\beta = |\frac{1}{2}, -\frac{1}{2} > E = -\frac{1}{2}\gamma_{e}\hbar B_{0}$

rezonans swobodnego elektronu: $\omega_0 = \gamma_e B_0$ $\omega_0 = 9.5 \text{ GHz w polu } B_0 = 0.34 \text{ T}$ rezonans w materii skondensowanej (dla pola B_{rez}): $B_{rez} = hv/g\beta$ $g \neq g_e$ oddziaływanie z polem B_0 : $H = B_0 gS$ $g = g_e E + \Delta g$ E - macierz jednostkowa rozszczepienia sygnałów EPR

- rozszczepienia subtelne: bezpośredniego oddziaływania DD elektronów (ciało stałe)

- rozszczepienia nadsubtelne: oddziaływanie DD elektron(S)-jądro (I) H_{DD} = SAI

gazy, ciecze i roztwory

uśrednienia: g do skalara $\Delta g=(1/3)Tr\Delta g$; A do skalara a $H_{DD} = aSI$; DD elektronów do 0

$$\begin{split} \textbf{H} &= g\textbf{B}_{0}\textbf{S}_{z} + \sum_{k}a_{k}\textbf{I}^{k}\textbf{S} \quad \sum_{k}a_{k}\textbf{I}^{k}\textbf{S} \approx \sum_{k}a_{k}l_{z}^{k}S_{z} \text{ energie rozszczepionych poziomów} \\ & \text{E} &= g\textbf{B}_{0}\textbf{M}_{S} + \sum_{k}a_{k}\textbf{M}_{1}^{k}\textbf{M}_{S} \quad \textbf{M}_{S} = -\textbf{S}, -\textbf{S} + 1, ..., \textbf{S} - 1, \textbf{S}, \quad \textbf{M}_{1}^{k} = -\textbf{I}^{k}, -\textbf{I}^{k} + 1, ..., \mid \textbf{I}^{k} - 1, \mid \textbf{I}^{k} \\ \textbf{reguły wyboru:} \quad \Delta \textbf{M}_{S} = +1 \quad \Delta \textbf{M}_{1}^{k} = 0 \qquad \textbf{n} = \prod_{i} (2\textbf{I}^{j} + 1) \quad \textbf{linii w multiplecie} \end{split}$$

WIDMO EPR WOLNEGO RODNIKA

Mackor et al. Carbohydr. Res. 87, 175, 1980

MODEL WEKTOROWY ANALIZY (1)

MODEL WEKTOROWY ANALIZY (2)

70. EKSPERYMENT DWUWYMIAROWY NMR: 1H, 1H - NOESY

Wüthrich K. et al., J. Mol. Biol. (1982) 155, 311-319

71. EKSPERYMENT 2D HETEROJĄDROWY

widmo: cis- $(\eta^3$ -allyl)⁴Cr₂ Benn & Gunther Angew. Chem. Int. Ed. Engl. 22, 350, 1983

72. HETEROJĄDROWY EKSPERYMENT TRÓJWYMIAROWY

Oschkinat H. et al., Angew. Chem. Int. Ed. Engl. (1994) 33, 277-293
73. WIELOWYMIAROWA SPEKTROSKOPIA IR

Fayer et al. Accounts Chem. Res. 42, 1210, 2009

74. WIELOWYMIAROWA SPEKTROSKOPIA ELEKTRONOWA

Ginsberg et al. Accounts Chem. Res. 42, 1352, 2009

SPEKTROSKOPIA SMS

Fig. 1. Labeling schemes (left) and physical observables (right). (A) Localization of a macromolecule labeled with a single fluorophore F with nanometer accuracy. The point-spread-function (PSF) can be localized within a few tenths of a nanometer. (B) Colocalization of two macromolecules labeled with two noninteracting fluorophores, F_1 and F_2 . Their distance can be measured by subtracting the center positions of the two PSFs. (C) Intramolecular detection of conformational changes by spFRET. D and A are donor and acceptor; f_0 and f_A are donor and acceptor emission intensities; *t* is time. (D) Dynamic colocalization and detection of association by intermolecular spFRET. Donor and acceptor intensities are anticorrelated

both in (C) and (D). (E) The orientation of a single immobilized dipole can be determined by modulating the excitation polarization. The fluorescence emission follows the angle modulation. (F) The orientational freedom of motion of a tethered fluorophore can be measured by modulating the excitation polarization and analyzing the emission at orthogonal s and p polarization detectors. $I_{\rm s}$ and $I_{\rm p}$ are emission intensities of s and p detectors. (G) Ion channel labeled with a fluorescence indicator I. Fluctuations in its intensity $I_{\rm r}$ report on local ion concentration changes. (H) Combination of (C) and A report on conformational changes whereas I reports on ion flux.

76. ZASTOSOWANIA SPEKTROSKOPII

(A) oznaczanie zawartości związków chemicznych (stężenia): absorpcja UV-VIS

(B) wyznaczanie struktury chemicznej cząsteczek: NMR, IR i Raman

- (C) wyznaczanie parametrów struktury elektronowej: absorpcja UV-VIS, emisja, IR
- (D) wyznaczanie struktur przestrzennych, długości wiązań i kąty płaskie: IR, Raman, NMR;
- stereoizomeria: ROA, VCD, CD; konformacje: NMR, EPR, emisja, CMDS, CD, VCD, RR
- (E) wyznaczanie parametrów ruchów molekularnych, dyfuzji rotacyjnej: fluorescencja,
- NMR; dyfuzji translacyjnej: EPR, FCS; wymiany chemicznej (konformacyjnej): CMDS, NMR
- (F) śledzenie przekształceń konformacyjnych: absorpcja UV-VIS, CD, NMR
- (G) wyznaczanie populacji konformerów i wysokości barier energetycznych dla przejść konformacyjnych: NMR
- (H) analiza oddziaływań międzycząsteczkowych: asocjacje i agregacje: IR, Raman, NMR, CMDS, ES, NMR
- (I) weryfikacja obliczeń kwantowych: IR, Raman, NMR
- (J) wspomaganie mikroskopii: fluorescencja, RR
- (K) śledzenie manipulacji pojedynczymi molekułami: SMS
- (L) nieinwazyjne obrazowanie w medycynie: NMR
- (M) komputery kwantowe: NMR

77. KOMPLEMENTARNE PAROWANIE A:T ABSORPCJA IR

Hamlin et al. Science 148, 1734, 1965

78. WYZNACZANIE PARAMETRÓW STRUKTURALNYCH

Przyporządkowanie sygnałów NMR na podstawie przesunięć chemicznych δ_i i sprzężeń skalarnych J(i,j)

Intensywność oddziaływania dipol-dipol

lokalna

- Stałe sprzężenia skalarnego J(i,j), np. J(¹H,¹H)

Kąty dwuścienne we fragmentach cząsteczkowych

<u>Odległości</u>r_{ij}

między protonami w cząsteczce

globalna

(efekt Overhausera)

Resztkowe sprzężenia dipol-dipol

<u>Wzajemna orientacja</u> fragmentów cząsteczki 79.

NIEINWAZYJNE OBRAZOWANIE MR

Ernst: Quart. Rev. Biophys. 19, 183, 1987

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). While MRI displays the spatial distribution of an NMR parameter, MRS presents a local spectrum. In this case, a phosphorus spectrum allows the distinction of inorganic phosphate (P_i) , phosphocreatine (PCr) and adenosine triphosphate (ATP).

liniowy gradient pola wzdłuż osi x

 $g_x = \partial B_0 / \partial x$

zróżnicowanie częstości rezonansowych ω

w zależności od położenia fragmentu x

 $\omega = \gamma_{^{1}H}(B_0 + xg_x)$

relacja położenie fragmentu - częstość

 $x = \omega/(\gamma_{1H}g_x)$

80.

KOMPUTERY KWANTOWE

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY

Projekt *Fizyka wobec wyzwań XXI wieku* współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego